logo logo
  • Home
  • About Us
  • Information & Guidelines
    • Article Processing Charges
    • Information Editorial Board
    • Information For Authors
    • Terms and Conditions
    • Open Access Policy
    • Privacy Policy
    • Contact Us
  • Register
  • Login
  • Home
  • About Us
  • Information & Guidelines
    • Article Processing Charges
    • Information Editorial Board
    • Information For Authors
    • Terms and Conditions
    • Open Access Policy
    • Privacy Policy
    • Contact Us
    • Faq
  • Register
  • Login

Singgle Article

Home > Singgle Article
[This article belongs to Volume - 27, Issue - 08]

Chemical Modelling Potentiometric Study on the Complex Formation of Ditopic Sebacic Acid Dihydrazide with Co2+ and Ni2+ in Aqueous Medium

Within a series of dipeptide derivatives (5–11), compound 4 was refluxed with d-glucose, d-xylose, acetylacetone, diethylmalonate, carbon disulfide, ethyl cyanoacetate, and ethyl acetoacetate which yielded 5–11, respectively. The candidates 5–11 were characterized and their biological activities were evaluated where they showed different anti-microbial inhibitory activities based on the type of pathogenic microorganisms. Moreover, to understand modes of binding, molecular docking was used of Nicotinoylglycine derivatives with the active site of the penicillin-binding protein 3 (PBP3) and sterol 14-alpha demethylase’s (CYP51), and the results, which were achieved via covalent and non-covalent docking, were harmonized with the biological activity results. Therefore, it was extrapolated that compounds 4, 7, 8, 9, and 10 had good potential to inhibit sterol 14-alpha demethylase and penicillin-binding protein 3; consequently, these compounds are possibly suitable for the development of a novel antibacterial and antifungal therapeutic drug. In addition, in silico properties of absorption, distribution, metabolism, and excretion (ADME) indicated drug likeness with low to very low oral absorption in most compounds, and undefined blood–brain barrier permeability in all compounds. Furthermore, toxicity (TOPKAT) prediction showed probability values for all carcinogenicity models were medium to pretty low for all compounds.

  • RJCE-06-05-2024-1154 Research Journal of Chemistry and Environment
Paper Access Key
No Access Key (Request for Download)
Research Journal of Chemistry and Environment

Information

  • Contact Us
  • Privacy Policy
  • Open Access Policy
  • Terms and Conditions

Guidelines

  • Information For Authors
  • Information Editorial Board
  • Article Processing Charges

Contact Info

  • journalpublication435@gmail.com
  • support@worldsresearchassociation.com
  • admin@worldsresearchassociation.com

Copyright © 2024 Research Journal of Chemistry and Environment. All rights reserved.